
Understanding Mass Transfer Directions via Data-Driven Models
with Application to Mobile Phone Data

Alessandro Alla∗ Caterina Balzotti† Maya Briani‡ Emiliano Cristiani‡

Abstract

The aim of this paper is to solve an inverse problem which regards a mass moving in a
bounded domain. We assume that the mass moves following an unknown velocity field and
that the evolution of the mass density can be described by a partial differential equation, which
is also unknown. The input data of the problems are given by some snapshots of the mass
distribution at certain times, while the sought output is the velocity field that drives the mass
along its displacement. To this aim, we put in place an algorithm based on the combination of
two methods: first, we use the Dynamic Mode Decomposition to create a mathematical model
describing the mass transfer; second, we use the notion of Wasserstein distance (also known as
earth mover’s distance) to reconstruct the underlying velocity field that is responsible for the
displacement. Finally, we consider a real-life application: the algorithm is employed to study the
travel flows of people in large populated areas using, as input data, density profiles (i.e. the spatial
distribution) of people in given areas at different time instants. This kind of data are provided
by the Italian telecommunication company TIM and are derived by mobile phone usage.

Keywords. Data-driven methods, dynamic mode decomposition, Wasserstein distance, earth mover’s
distance, cellular data, presence data.

Mathematics Subject Classification. 37C10, 35R30, 76D55.

1 Introduction

In this paper we aim at solving an inverse problem which regards a mass moving in a bounded domain
with finite velocity. We assume that the mass moves following an unknown velocity field and that the
evolution of the mass density can be described by an unknown PDE. The input data of the problem
are given by some snapshots of the mass distribution at certain times, while the sought information
is the velocity field that drives the mass along its displacement.

The basic idea can be summarized as follows: given two snapshots of the mass distribution at
two instants of time, we want to understand where each portion of the mass (which is assumed
to be conserved from one instant of time to the other) is transported from/to, i.e. how the first
spatial distribution is rearranged in the second one. The goal is pursued by computing a numerical
approximation of the Wasserstein distance (also known as earth mover’s distance or Mallows distance)
between the two consecutive density profiles, specifying a suitable cost function which measures the
“energy” consumed by the system for moving forward. The computation of the Wasserstein distance
gives, as a by-product, the minimum-cost mass flow from the first to the second configuration, i.e.
how the mass distributes in space and time.

Despite the good preliminary results obtained by the above described Wasserstein-based approach
[2, 19], the algorithm is found to be excessively expensive both in terms of CPU time and memory

∗Departamento de Matemática, PUC-Rio, Rio de Janeiro, BR (alla@mat.puc-rio.br).
†Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Università di Roma, Rome, IT (cate-

rina.balzotti@sbai.uniroma1.it).
‡Istituto per le Applicazioni del Calcolo “M. Picone”, Consiglio Nazionale delle Ricerche, Rome, IT

(m.briani@iac.cnr.it, e.cristiani@iac.cnr.it).

1

ar
X

iv
:1

90
2.

09
28

7v
3 

 [
m

at
h.

N
A

] 
 2

2 
N

ov
 2

01
9

mailto:alla@mat.puc-rio.br
mailto:caterina.balzotti@sbai.uniroma1.it
mailto:caterina.balzotti@sbai.uniroma1.it
mailto:m.briani@iac.cnr.it
mailto:e.cristiani@iac.cnr.it


requirements. This fact strongly restricts the applicability of the method. To fix this, in this paper we
propose to couple the method with the Dynamic Mode Decomposition (DMD): a data-driven technique
that takes in input the snapshots of the mass distribution and returns an analytical approximation
of the dynamics underlying the mass transfer. More precisely, it provides a system of ODEs which
describes the evolution of the mass in any point of the domain. Solving the ODEs, we are able to
recover the mass distribution at any time, thus increasing at will the number of available snapshots or,
analogously, decreasing at will the time frame between them. Controlling the time frame between two
consecutive snapshots is the key to simplify the computation of the Wasserstein distance and makes
the computation of the flows feasible even on large domains.

Finally, a real-world application of the proposed methodology is illustrated. We are interested in
inferring activity-based human mobility flows from mobile phone data. We assume that mobile devices
are not singularly tracked, but their logs are aggregated in order to obtain the total number of users
in a given area. In this way we get the density profiles (i.e. the spatial distribution) of people in a
given area at various instants of time. The dataset we have at our disposal is provided by the Italian
telecommunication company TIM. The time frame between two consecutive snapshots is 15 minutes.

As before, the goal is to “assign a direction” to the presence data. In fact, the mere representation
of time varying density of people clearly differentiate attractive from repulsive or neutral areas but
does not provide any information about the directions of flows of people. In other words, we are
interested in a “where-from-where-to” type of information, which reveals travel flows and patterns of
people providing a sort of origin-destination matrix.

Paper organization. The paper is organized as follows. In Section 2 we present the DMD method
and the Wasserstein distance. In Section 3 we show how to couple those methods to obtain an efficient
algorithm. In Section 4 we apply the proposed approach to real-life data. In Section 5 we draw our
conclusions. Finally, in Appendix A we apply the DMD method to the viscous Burgers’ equation.

2 Mathematical background

In this section we recall the building blocks of the methodology proposed in the paper, namely the
DMD method used to build a data-driven model, and the Wasserstein distance to determine the
transport map driving the moving mass.

2.1 DMD method

DMD is a data-driven method capable of providing accurate assessments of the spatio-temporal coher-
ent structures in a given complex system, or short-time future estimates of such a system. Although
a complete list of references for DMD goes beyond the scopes of this work, we would like to mention
[3, 5, 6, 13, 15]. In the current work we use the DMD algorithm as in [16].

To begin, we suppose to have a set of data X = {y(t0), . . . ,y(tnf
)} for some time instances {tj}nf

j=0

with y(tj) ∈ RN , j = 0, . . . , nf and ∆t = tj+1 − tj for j = 0, . . . , nf − 1. The goal of the method is to
build a mathematical model upon the dataset X ∈ RN×(nf+1). The DMD procedure thus constructs
the approximate linear evolution ŷ(t) for the dataset X exploiting its low-rank structure:

dŷ

dt
= Âŷ (2.1)

where Â ∈ RN×N is unknown, ŷ(0) = ŷ0, and the solution has the form

ŷ(t) =

r∑
i=1

βiψi exp(ωit) , (2.2)

2



where r < N,ψi and ωi are the eigenvectors and eigenvalues of the unknown matrix Â. The coefficients
βi of the vector β can be determined from the initial data. For example, at t = t0 we have y(t0) = y0

so that (2.2) gives β = Ψ†y0, where Ψ is a matrix comprised of the DMD modes ψi and † denotes the

Moore-Penrose pseudo-inverse. To compute the matrix Â, we first split the dataset into two snapshot
matrices

Y=

y(t0) y(t1) · · · y(tnf−1)

 , Y′=

y(t1) y(t2) · · · y(tnf
)

 (2.3)

and suppose the following linear relation hold true:

Y′ = AY, (2.4)

where A := exp (Â∆t).
Specifically, we assume that y(tj) is an initial condition to obtain y(tj+1), i.e. its corresponding

output after some prescribed evolution time ∆t > 0. Thus, the DMD method computes the best
linear operator A relating to the matrices above:

A = Y′Y†. (2.5)

We refer to Y and Y′ as input and output snapshot matrices respectively.
The DMD algorithm aims at optimally constructing the matrix A so that the error between the

true and approximate solution is small in a least-square sense, i.e. ‖y(t)− ŷ(t)‖ � 1. Of course, the
optimality of the approximation holds only over the sampling window where A is constructed, but the
approximate solution can be used to make future state predictions, and to decompose the dynamics
into various time-scales.

The matrix A is often highly ill-conditioned and when the state dimension n is large, the afore-
mentioned matrix may be even intractable to analyze directly. Instead, DMD circumvents the eigen-
decomposition of A by considering a low rank representation in terms of a matrix Â projected with
the Proper Orthogonal Decomposition (POD). Although the description of the POD method goes
beyond the scopes of this paper, we recall that the POD projection solves the following optimization
problem

min
ϕ1,...,ϕr∈Rn

nf−1∑
j=0

∥∥∥∥∥y(tj)−
r∑
i=1

〈y(tj),ϕi〉ϕi

∥∥∥∥∥
2

such that 〈ϕi,ϕj〉 = δij , (2.6)

where {ϕi}ri=1 are the POD projectors. The solution of the optimization problem (2.6) is obtained by
means of a Singular Value Decomposition (SVD) of the dataset Y, where the first r � N columns of
the left singular eigenvectors are the required POD basis. We refer to [18] for a complete description of
the POD method. We also mention that POD method is equivalent to Principal Component Analysis
(PCA) or Karhunen-Loéve expansion in other contexts (see e.g. [8, 9]).

The exact DMD algorithm proceeds as follows [16]: first, we collect data Y,Y′ as in (2.3) and
compute the reduced, or economy, singular value decomposition of Y

Y = UΣVT .

We note that the use of the economy SVD is suggested since the matrices Y,Y′ ∈ Rn×nf with
N � nf and that the economy U ∈ RN×r is sufficient to provide the same approximation of the
regular SVD given the limited amount of snapshots.
Furthermore, the DMD typically makes use of low-rank structure so that the total number of modes,
r � N , allows for dimensionality reduction of the dynamical system. Then, we compute the least-
squares fit A that satisfies Y′ = AY and project onto the POD modes U. Specifically, the Moore-
Penrose pseudo-inverse of Y allows us to compute A = Y′Y†, where the Moore-Penrose algorithm
provides the least-square fitting procedure. In terms of its low-rank projection, this yields

Â = UTAU = UTY′VΣ−1,

3



and then, we compute the eigen-decomposition of Â ∈ Rr×r

ÂW = WΛ,

where Λ are the DMD eigenvalues. Finally, the DMD modes ΨDMD are given by

ΨDMD = Y′VΣ−1W. (2.7)

The algorithm is summarized in Algorithm 1.

Algorithm 1 Exact DMD

Require: Snapshots {y(t0), . . . ,y(tnf
)}, Time step ∆t.

1: Set Y = [y(t0), . . . ,y(tnf−1)] and Y′ = [y(t1), . . . ,y(tnf
)].

2: Compute the reduced SVD of rank r of Y, Y = UΣVT .
3: Define Â := UTY′VΣ−1.
4: Compute eigenvalues and eigenvectors of ÂW = WΛ.
5: Set ΨDMD = Λ−1Y′VΣ−1W.
6: Set ωi = log(λi)

∆t for (2.2)

In Appendix A we provide a numerical experiment to show the effectiveness of the DMD method.
We compute the data from a nonlinear PDE, i.e. the viscous Burgers’ equation.

2.2 Wasserstein distance and optimal mass transfer problem

The notion of Wasserstein distance is strictly related to the Monge–Kantorovich optimal mass transfer
problem [17], which can be easily explained as follows: given a sandpile with mass distribution ρi and
a pit with equal volume and mass distribution ρf, find a way to minimize the cost of transporting sand
into the pit. The cost for moving mass depends on both the distance from the point of origin to the
point of arrival and the amount of mass is moved along that path. We are interested in minimizing
this cost by finding the optimal path to transport the mass from the initial to the final configuration.

Given two density functions ρi, ρf : Ω → R for some bounded Ω ⊂ Rn such that
∫
Rn ρ

i =
∫
Rn ρ

f,

we define the Lp-Wasserstein distance between ρi and ρf as

Wp(ρ
i, ρf) =

(
min
T∈T

∫
Ω

c(ξ, T (ξ))p ρi(ξ)dξ

) 1
p

(2.8)

where

T :=

{
T : Ω→ Ω :

∫
B

ρf(ξ)dξ =

∫
{ξ:T (ξ)∈B}

ρi(ξ)dξ, ∀B ⊂ Ω

}

and c : Ω×Ω→ R is a given cost function, which defines the cost of transferring a unit mass between
any two points in Ω. Note that T is the set of all possible maps which transfer the mass from one
configuration to the other.

It is important to note here that we are not really interested in the actual value of the Wasserstein
distance Wp, instead we look for the optimal map T ∗ which realizes the arg min in (2.8), and represents
the paths along which the mass is transferred.

2.3 Numerical approximation of the Wasserstein distance

A direct numerical approximation of definition (2.8) is unfeasible, but a discrete approach is still
possible. Indeed, we can resort to classical problems (see Hitchcock’s paper [7]) and methods (see e.g.,
[12, Sec. 6.4.1] and [14, Chap. 19]) to recast the original mass transfer problem in the framework of

4



linear programming (LP). We also refer to [4] for a recent application of this methodology to traffic
flow problems.

The idea consists in approximating the set Ω with a structured grid with N square cells C1, . . . , CN ,
as it is commonly done for the numerical approximation of PDEs. We denote by ∆x the length of
each side of the cells. Then, we define a graph G whose nodes coincide with the centers of the N
cells. Graph’s edges are defined in such a way that each node is directly connected with each other,
including itself.

Introducing a numerical error (controlled by the parameter ∆x), we are allowed to assume that
∀j = 1, . . . , N all the mass distributed in the cell Cj is concentrated in its center, i.e. in a node of
the graph. We come up with an initial mass mi

j :=
∫
Cj
ρidx and a final mass mf

j :=
∫
Cj
ρfdx, for

j = 1, . . . , N , distributed on the graph nodes. Now, we simply aim at optimally rearranging the first
mass into the second one moving it among the graph’s nodes.

We denote by cjk the cost to transfer a unit mass from node j to node k, and by xjk the (unknown)
mass moving from node j to node k. The problem is then formulated as

minimize H :=

N∑
j,k=1

cjkxjk

subject to ∑
k

xjk = mi
j ∀j,

∑
j

xjk = mf
k ∀k and xjk ≥ 0.

Defining

x = (x11, x12, . . . , x1N , x21, . . . , x2N , . . . , xN1, . . . , xNN )T,

c = (c11, c12, . . . , c1N , c21, . . . , c2N , . . . , cN1, . . . , cNN )T,

b = (mi
1, . . . ,m

i
N ,m

f
1, . . . ,m

f
N )T,

and the 2N ×N2 matrix

M =



1N 0 0 . . . 0

0 1N 0 . . . 0

0 0 1N . . . 0

...
...

...
. . .

...

0 0 0 . . . 1N
IN IN IN IN IN


,

where IN is the N × N identity matrix and 1N = (1 1 . . . 1)︸ ︷︷ ︸
N times

, our problem is written as a standard

LP problem:

min cTx,
subject to Mx = b,

x ≥ 0.
(2.9)

The result of the algorithm is a vector x∗ := arg min cTx whose elements x∗jk represent how much
mass moves from node j to node k employing the minimum-cost mass rearrangement.

Remark 2.1. The dimension of the LP problem (2.9) is given by the dimensions of the matrix/vectors
involved:

dim x = dim c = N2, dim b = 2N, dim M = 2N3.

Remark 2.2. Hereafter we will refer to problem (2.9) as global, in order to stress the fact that it is
possible to move the mass from and to any node of the graph.

5



3 Coupling DMD and optimal mass transfer problem

In this section we describe how we can drastically reduce the size of the LP problem (2.9) by using
the DMD method. The resulting algorithm will allow us to study the mass transfer problem on large
domains.

3.1 Main idea

The large size of the LP problem (2.9), stressed in Remark 2.1, mainly comes from the fact that the
mass is allowed to be transferred from any graph node to any other graph node. However physical
constraints prevent this to happening: assuming that the maximal velocity of the mass is Vmax and
denoting by ∆t the time frame from one snapshot to the following one, the maximal distance travelled
is Vmax∆t.

In order to reduce the size of the LP problem (2.9), we restrict the set of all possible movements
trajectories. The ideal time frame δt of the snapshots would be the one which guarantees that the
CFL-like condition (see, e.g., [11, Chapter 14])

Vmaxδt ≤ ∆x (3.1)

holds true. Indeed, under condition (3.1) the mass is allowed to move only towards the adjacent cells
or not move at all.

Consider now a generic set of mass distributions X = {m(t0), . . . ,m(tnf
)}, where tj = j∆t,

j = 0, . . . , nf, and ∆t is the time frame of the snapshots of the set X . A priori, the time step ∆t does
not necessarily satisfy condition (3.1). In particular, a large distance in time between the snapshots
means that there are not enough information for reducing the set of possible movements. However,
with the DMD we are able to reconstruct the state of the system at any time instance, even if it is
not provided in the original dataset. The coupling of DMD and of optimal mass transfer problem is
done in this order:

i) We first fix δt < ∆t such that it satisfies condition (3.1) and then we reconstruct the solution
for each t̃j = jδt via DMD, using Algorithm 1. The new set of snapshots we work with is

X̃ = {m(t̃0), . . . ,m(t̃ñf
)}, where m(t̃j) is computed from (2.2), j = 0, . . . , ñf. We observe that

ñf > nf.

ii) We recover the flows from the new set X̃ by means of an approximation of Wasserstein distance
similar to the one done in Section 2.3, but with reduced size, as described in detail below. Note
that, since ñf > nf, we have to solve more LP problems with respect to the global approach,
but, despite this, we will get advantages by using this new approach.

Let us denote by d the maximum number of neighbors per cell. The new unknown x̃jk, corre-
sponding to the mass to be moved from node j to node k, is defined only if j and k are adjacent or j is
equal to k. Analogously we define the cost function c̃jk. We denote by x̃ the vector of the unknowns
and by c̃ the vector associated to the cost function. We introduce the vector s whose components
are indexes of nodes. The first components are the indexes of the nodes adjacent to the node 1, then
those adjacent to the node 2 and so until the node N . Vectors x̃ and c̃ are ordered similarly to s.
Since the mass can move only towards a maximum of d nodes, the dimensions of x̃ and c̃ are lower or

6



equal than dN . We introduce the matrix

M̃ =



1r1 0 0 . . . 0

0 1r2 0 . . . 0

0 0 1r3 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1rN
D̃


,

where 1ri = (1 1 . . . 1)︸ ︷︷ ︸
ri times

, with ri the number of adjacent nodes for each node i, ri ≤ d, and D̃ij = 1 if the

j-th element of s is equal to i, otherwise D̃ij = 0. Defining the vector b̃ = (mi
1, . . . ,m

i
N ,m

f
1, . . . ,m

f
N )T

the LP problem becomes
min c̃Tx̃,

subject to M̃x̃ = b̃
x̃ ≥ 0.

(3.2)

Remark 3.1. The dimension of the LP problem (3.2) is given by the dimensions of the matrix/vectors
involved:

dim x̃ = dim c̃ ≤ dN, dim b̃ = 2N, dim M̃ ≤ 2dN2.

Remark 3.2. Hereafter we will refer to problem (3.2) as local, in order to stress the fact that it is
possible to move the mass from and to adjacent nodes of the graph only.

3.2 A toy example for the complete algorithm: the advection equation

In this test we propose an example for the complete algorithm described in Section 3.1. Let us consider
the advection equation: 

∂tu(x, t) + v · ∇u(x, t) = 0 x ∈ Ω, t ∈ [0, T ]

u(x, t) = 0 x ∈ ∂Ω

u(x, 0) = u0(x) x ∈ Ω,

(3.3)

with x = (x1, x2), Ω = [−2, 2] × [−2, 2], u0(x) = max(0.5 − x2
1 − x2

2, 0) and constant velocity v =
(0.5, 0.5). It is well known that the analytical solution of (3.3) is u(x, t) = u0(x−vt) provided that we
set T small enough to have inactive boundary conditions, as it is the case here. Hereafter we denote
by reference solution the analytical solution u of (3.3).

Starting from some snapshots of the solution, we aim at reconstructing the velocity field driving
the dynamics, i.e. the vector v = (0.5, 0.5). In doing this, we will also compare the global and the
local problem in terms of CPU time, see (2.9) and (3.2) respectively.

We choose a time step δt, and we collect snapshots with a larger temporal step size ∆t = κδt
with κ > 1 and we reconstruct the solution via the DMD method. We note that here the snapshots
are computed from the analytical solution of (3.3). In particular, we work on a grid 40 × 40 and we
choose T = 2, ∆x = 0.1, δt = 0.05 and ∆t = 2 δt. We observe that, since Vmax = ‖v‖ =

√
2/2, this

choice of δt fullfills the condition (3.1). The number of snapshots is 40 and the rank r in Algorithm
1 for the DMD reconstruction is 20. Moreover we identify the nodes of the graph G of the numerical
approximation of Wasserstein distance with the cells of the grid.

7



Figure 1. Reference solution of equation (3.3) at time t = 0 on the left and time t = 2 on the right.

Choice of the cost function. Since the cost function is used to figure out the “price to pay” for
moving the mass from a node of the graph to another one, the most intuitive definition of c is the
Euclidean distance in R2. This choice was proved to be unsuitable for the global problem, see [2].
Indeed, since the global algorithm allows any movements between the nodes of the graph, using the
Euclidean distance for the function c we loose the uniqueness of the optimal transfer map T ∗. To see
this let us assume that we have to move three unit masses one to the right. In the picture on the left
of Figure 2 we move the three unit masses of one to the right while in the picture on the right we move
only the first mass of three to the right. The Wasserstein distance between the two configuration is
clearly the same and equal to three.

Cost function

t0

t1

(a) Three small movements

t0

t1

(b) One large movement

Cost function

t0

t1

(a) Three small movements

t0

t1

(b) One large movementFigure 2. Three small movements versus one large movement.

The solution proposed in [2] to fix this issue was to force the minimization algorithm to select
primarly the small movements penalizing the large ones. To get this, the cost function was defined as

c(ξ1, ξ2) = ‖ξ1 − ξ2‖1+ε
R2 , (3.4)

where ξ1 and ξ2 are the coordinates of the nodes of the graph and ε > 0 is a small parameter which
accounts for the penalization.

In Figure 3 we show the level sets of the solution to (3.3) together with some arrows indicating the
reconstructed velocity field v. More precisely, on the left column of figure we show the results obtained
with the local algorithm (3.2), on the center with the global algorithm with Euclidean distance and on
the right with the global algorithm with the cost function defined in (3.4) (with ε = 0.1). Similarly,
the panels on the top show the results obtained with the reference solution whereas the panels on the
bottom those obtained with the DMD solution.

The local algorithm and the global one with the correction in (3.4) are able to reconstruct the ve-
locity field v = (0.5, 0.5) with accurate approximation. The global algorithm with Euclidean distance,
instead, is less precise, since the optimal flow does not correspond to the velocity field. Moreover,

8



(a) Local approach with reference so-
lution.

(b) Global approach with reference so-
lution and Euclidean distance.

(c) Global approach with reference so-
lution and cost defined in (3.4).

(d) Local approach with DMD solu-
tion.

(e) Global approach with DMD solu-
tion and Euclidean distance.

(f) Global approach with DMD solu-
tion and cost defined in (3.4).

Figure 3. Reconstructed flows between t1 = 0.725 and t2 = t1 + δt superimposed to the level sets of the
solution to (3.3) at t2. Left column: local algorithm. Central column: global algorithm with c equal to
the Euclidean distance. Right column: global algorithm with c defined in (3.4). Top row: the reference
solution to (3.3) is used for computation. Bottom row: the DMD reconstruction of the solution to (3.3)
is used for computation.

the algorithm based on the DMD reconstruction of the solution introduces small oscillations in the
solution to (3.3). This is expected in such hyperbolic problems since the decay of the singular values
of the dataset is very slow and the initial condition is non-smooth. However, such oscillations do not
have an effect in the reconstruction of the flow.

To further validate our approach we compute the numerical error of the proposed algorithm. Since
the results obtained with the global algorithm (2.9) with the Euclidean distance as cost function are
the least accurate, we focus only on the other two approaches. For each time step tn = nδt we define
x∗E(tn) and x̃∗E(tn) as the solutions to the LP problems (2.9) and (3.2) respectively at time tn, when

the known terms b(tn) and b̃(tn) are chosen as the reference solution to (3.3) at time tn. Analogously,
x∗D and x̃∗D are the solution when the known terms are obtained with the DMD method. The vectors
x∗E(tn), x̃∗E(tn), x∗D(tn) and x̃∗D(tn), for n = 1, . . . , b Tδtc+ 1, are finally collected as the columns of the

matrices X∗E , X̃∗E , X∗D and X̃∗D respectively. We define the errors

EG :=
‖X∗E −X∗D‖F
‖X∗E‖F

, EL :=

∥∥∥X̃∗E − X̃∗D

∥∥∥
F∥∥∥X̃∗E∥∥∥

F

, (3.5)

9



where ‖·‖F is the Frobenius norm. In Table 1 we compare the errors defined in (3.5) obtained from
the simulations on a grid with N × N nodes, for N = 20, 30 and 40. As we can see from the table,
increasing the number of nodes we reduce the space step ∆x = 4/N and the time step ∆t = ∆x/2
and we obtain the decrease of the error between the reference solution and the DMD reconstruction.
Moreover, the error obtained with the local algorithm is significantly smaller than the one obtained
with the global approach.

Table 1. Comparison of the errors defined in (3.5).

N ∆x ∆t EG EL

20 0.20 0.100 0.185 0.030
30 0.13 0.067 0.159 0.028
40 0.10 0.050 0.122 0.020

Finally, in Table 2 we compare the computational time between the global approach (2.9), with
the cost function as in (3.4), and the local approach (3.2) with respect to the nodes of the graph. We
observe that the local algorithm is always faster than the global one. The difference between the two
approaches becomes more relevant when we refine the grid by increasing the number of nodes, and
thus the number of time steps. Specifically, for a grid 40 × 40, the local algorithm required a few
seconds whereas the global one more than three hours.

Table 2. Computational time.

N Global Exact Global DMD Local Exact Local DMD
20 18.10 s 18.89 s 0.28 s 0.36 s
30 11 min 11 min 0.93 s 1.41 s
40 3 h 6 min 3 h 7 min 2.40 s 4.85 s

4 Application to real mobile phone data

In this section we focus on a specific application of the proposed approach. The real dataset gives in-
formation about the spatial distribution of people in a large populated area. The goal is to understand
the travel flows of people, focusing in particular on recurring patterns and daily flows of commuters.

4.1 Dataset

The Italian telecommunication company TIM provides estimates of mobile phones presence in a given
area in raster form: the area under analysis is split into a number of elementary territory units (ETUs)
of the same size (about 130 × 140 m2 in urban areas). The estimation algorithm does not singularly
recognize users and does not track them using GPS. It simply counts the number of phone attached
to network nodes and, knowing the location and radio coverage of the nodes, estimates the number
of TIM users within each ETU at any time. TIM has now a market share of 30% with about 29.4
million mobile lines in Italy (AGCOM, Osservatorio sulle comunicazioni 2/2017).

The data we considered refer to the area of the province of Milan (Italy), which is divided in
198,779 ETUs, distributed in a rectangular grid 389 × 511. Data span six months (February, March
and April 2016 and 2017). The entire period is divided into time intervals of 15 minutes, therefore
we have 96 data per day per ETU in total. In Figure 4 we graphically represent presence data at
a fixed time. We observe that the peak of presence is located in correspondence of Milan city area.
Figure 5 shows the presences in the province of Milan in a typical working day in the left panel. The

10



Figure 4. 3D-plot of the number of TIM users in each ETU of Milan’s province on April 18, 2017.

curve in the image decreases during the night, it increases in the day-time and decreases again in the
evening. These variations are due to two main reasons: first, the arrival to and departure from Milan’s
province of visitors and commuters. Second, the fact that when a mobile phone is switched off or
is not communicating for more than six hours, its localization is lost. The presence value that most
represents the population of the province is observed around 9 pm., when an equilibrium between
traveling and phone usage is reached. This value changes between working days and weekends, but it
is always in the order of 1.3× 106. On the right panel of Figure 5 we show the trend of presence data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour

1280000

1300000

1320000

1340000

1360000

1380000

1400000

1420000

1440000

Pr
es

en
ce

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 
Day

 900000

1000000

1100000

1200000

1300000

1400000

1500000

Pr
es

en
ce

s

Figure 5. Trend of presences in the province of Milan during a typical working day (left). Trend of presences
in the province of Milan during April 2017 (right).

during April 2017. We can observe a cyclical behavior: in the working days the number of presences
in the province is significantly higher than during the weekends. It is interesting to note the presence
of two low-density periods on April 15-18 and on April 22-26, 2017, determined respectively by the
Easter and the long weekend for the Italy’s Liberation Day holiday.

11



4.2 DMD approach on TIM data

As explained in Section 2.1, we can reconstruct the presence data in each cell at any time. We denote
by m(ti) ∈ RN the vector containing the number of people present in the N cells at a certain quarter
of an hour and by m(ti +15 min) ∈ RN the same quantities at the consecutive time step. Applying the
DMD method we are able to calculate m(t) ∈ RN for any t ∈ [ti, ti + 15 min], see (2.2). We also note
that DMD can be applied to higher dimensional dataset through randomized methods as explained
in [1].

To validate the DMD approach on the TIM dataset we study the daily error using only half of the
data at our disposal in the DMD reconstruction. More precisely, we denote by Pdata the matrix whose
columns correspond to the real data of presences stored every 15 minutes. Then, we reconstruct the
data of presences every minute with the DMD algorithm, using snapshots every 30 minutes. In other
words, we exploit only one column out of two of Pdata to build the matrix P̃DMD, which collects
the reconstructed data every minute. Since a day contains 96 quarters of an hour and 1440 minutes,
Pdata is a matrix 96×N , while P̃DMD is a matrix 1440×N . Finally, to compare the real data with
the DMD reconstruction, we extract from P̃DMD the rows corresponding to the original interval of
15 minutes into the matrix P̃DMD, of dimensions 96×N , and then we define the error as:

E =

∥∥∥Pdata − P̃DMD
∥∥∥
F

‖Pdata‖F
. (4.1)

In Figure 6 we show the daily error (4.1) for an entire month of data in the whole area of the province
of Milan. The daily error is of order 10−2, which certifies the accuracy of the DMD method.

1 5 10 15 20 25 30

Day

10
-3

10
-2

10
-1

E
rr

o
r

Figure 6. Daily error defined in (4.1) where DMD has been computed with r = 95 in step 2 of Algorithm 1.

4.3 Understanding human mobility flows

Following the approach described in Section 3, we define the graph G by exploiting the subdivision of
the area of the province of Milan (Italy) into ETUs; we identify the N nodes of the graph with the
corresponding center of the ETUs, ordered from the left to the right and from the top to the bottom.
The result is a rectangular graph G divided into NR rows and NC columns (N = NR × NC). The
mass mj(tn) is defined as the average number of presences in the node j at time tn = n 15 min.

Let us assume that Vmax in (3.1) is equal to 50 km/h. Since the dimensions of the ETUs is around
150 m, to apply the DMD we fix the new time step δt equal to 10 seconds. With this choice we assume

12



that people can move only towards the eight adjacent nodes of the rectangular graph, or not move at
all. We observe that the mass in the nodes on the four corners of the graph can move only towards
four directions (adjacent nodes or no movement), while the mass along the boundaries can move only
towards six directions. In this way, the total number of possible movements between the cells is given
by

Ñ = 4 · 4︸︷︷︸
corners

+ 6 · 2 (NR +NC − 4)︸ ︷︷ ︸
boundaries

+ 9 (N − 4− 2 (NR +NC − 4))︸ ︷︷ ︸
internal nodes

< 9N. (4.2)

The vectors x̃ and c̃ associated to the unknown moving mass and to the cost function have length

Ñ , while the matrix M̃ of the LP problem (3.2) has dimension 2N × Ñ . In Table 3, we compare
the dimensions of the vectors and the matrices of the two different LP problems: it is clear that the
computational time to solve problem (3.2) is significantly reduced respect to problem (2.9).

Table 3. Comparison between dimensions of matrices and vectors for the two methods.

Algoritm Vectors Dimension Matrix Dimension
Global N2 2N3

Local Ñ (< 9N) 2N × Ñ (< 18N2)

Choice of the cost function c. Since the ETUs are rectangles of length `x = 130 m and `y = 140
m, we define the cost function cjk for the local algorithm as follows:

cjk =


0 if j = k or j and k are not adjacent

`x if j and k are horizontally adjacent

`y if j and k are vertically adjacent√
`2x + `2y if j and k are diagonally adjacent.

For the global approach, we use the cost function defined in (3.4) with ε = 0.1.
To sum up, in order to solve the mass transfer problem for a whole day using snapshots taken

every 15 minutes (real data) we have to solve 96 global LP-problems (2.9), whereas with the DMD
algorithm we have to solve 8640 local LP-problems (3.2). As we will see in the following section,
despite the larger number of LP problems, the local approach is more convenient than the global one.

Remark 4.1. The Wasserstein distance is defined between two distributions of equal mass (see (2.8)).
In our case the conservation of mass between two consecutive snapshots is not guaranteed. Let us
consider a couple of snapshots with different total mass

∑
jm

0
j 6=

∑
jm

1
j . To correctly apply the

algorithms for the identification of flows, we compute the mass in excess between the two snapshots
and then we uniformly distribute it in all the nodes of the graph with lower mass. A more sophisticated
approach could be the one suggested in [10], where a definition of Wasserstein distance between two
distributions with different mass is proposed.

4.4 Numerical results

In this section we show the results obtained with the local algorithm (3.2) to study the flows of
commuters and the influence of great events on human mobility. In both cases the rank r in step 2
of Algorithm 1, used for the construction of the DMD solution, is 95. The flows are represented by
arrows; we draw only those which correspond to the most significant movements, and we associate a
darker color to the arrows corresponding to a larger movement of people. For graphical purposes, in
the following plots we aggregate 6 time steps δt to show 1-minute mass transport.

13



4.4.1 Flows of commuters

In the following simulations we consider the area of the Province of Milan during a generic working
day. Milan is one of the biggest Italian city and it attracts many workers from outside. The city of
Milan is located in the right part of the Province, therefore we mainly see movements from/to the
left part of the analyzed area. In the top panel of Figure 7 we show the morning flows of a working
day: we clearly see that the arrows are directed towards the city of Milan. In particular, we zoom
on the arrows which overlap the roads heading to Milan. In the bottom panel of Figure 7 we show
the opposite phenomenon: in the evening people go away from work to come back home inside the
Province of Milan.

CPU times. Considering data for a 6 hours frame on an area of 144×240 ETUs the local algorithm
requires 144 hours of CPU time and works with 360 snapshots. The global approach (2.9) is not able
to analyze such an area, since the matrix M in (2.9) has a computationally unmanageable dimension.

4.4.2 Flows influenced by a great event

In this test we show how the algorithm is able to capture the way a big event influences human
flows. The event we have considered is the exhibition of the Salone del Mobile, held every April
at Fiera Milano exhibition center in Rho, near Milan. We analyze a square area of 31 × 31 ETUs
centered around Fiera Milano. In the left panel of Figure 8 we show the morning fluxes directed to
the exhibition area whereas in the right panel we show the evening flows directed from the exhibition
area to the outside.

CPU times. For a simulation of 18 hours, from 06:00 to 23:45, on an area of 31×31 ETUs, the local
algorithm requires 6 minutes of CPU time while the global approach requires 30 minutes. Furthermore,
we observe that the local algorithm works with 1065 snapshots of data, whereas the global one with
266 snapshots.

5 Conclusions

In this paper we have proposed an efficient method to solve an inverse mass transfer problem, consisting
in recovering the dynamics underlying the mass displacement. The proposed algorithm prevents to
handle large displacements of the mass, thus saving CPU time and memory allocation with respect
to other recently proposed solutions.

The application of the methodology to a real dataset describing the movement of people was also
investigated. It is useful to note here that the applicability of the Wasserstein-based methodology was
not at all obvious, since it is based on assumptions which are not totally fullfilled. Indeed, the choice
of the cost function c does not take into account the fact that people move mainly along roads, are
stopped by obstacles, buildings, etc., and in general are not free to move in all directions. Moreover,
and most important, the computation of the Wasserstein distance stems from a global optimization
problem in which the mass is considered as a whole. In other words, the optimal transport map T ∗ is
found by minimizing the cost of the displacement of the whole crowd, without any distinction among
people, and with no regards about individual targets. Despite this, the results we have obtained (see
especially those in Figure 7 and 8) are exactly as one can expect, meaning that the method is, overall,
robust enough to work well even if the constitutive assumptions are not totally fullfilled.

14



Figure 7. Flows of commuters during the morning (09:00-09:01) of a generic working day (top). Flows of
commuters during the evening (18:00-18:01) of a generic working day (bottom).

15



Figure 8. Main flows directed to the exhibition area in the morning (09:45 - 09:46) (left), Main flows from the
exhibition area in the evening (18:00 - 18:01).(right)

A The DMD for the viscous Burgers’ equation

Here we propose a numerical experiment using data generated by the 2D viscous Burgers’ equation:
∂ty − ε∆y + y(∂x1

y + ∂x2
y) = 0 x ∈ Ω, t ∈ [0, T ]

y(x, t) = 0 x ∈ ∂Ω

y(x, 0) = sin(πx1) sin(πx2) x ∈ Ω,

(A.1)

with x = (x1, x2), Ω = [0, 1] × [0, 1], T = 1 and ε = 0.01. The numerical approximation of equation
(A.1) has been carried out by a finite difference method on a square grid with N = 1600 nodes,
using an adaptive Runge-Kutta method for the time integration with temporal step size ∆t > 0. We
refer to [11] for further details on the numerical method. In what follows, since we do not know the
analytical solution of equation, we consider as reference solution of (A.1) its numerical approximation
with ∆t = 0.0125.

To show how DMD reconstructs the model we consider as dataset X the numerical approximation
of (A.1) for the following temporal step sizes ∆t = {0.1, 0.05, 0.025, 0.0125} with snapshots matrices
of dimension N × 11, N × 21, N × 41, N × 81, respectively. Once the snapshots have been computed
we apply Algorithm 1 to reconstruct the solution corresponding to a fixed δt = 0.0125. Here, we aim
at testing the capability of the DMD method to approximate the dataset for the missing information.

In Figure 9, we show the reference solution of (A.1) in the top row and the absolute difference
between the reference solution and the reconstructed one with DMD in the bottom row for two time
instances. We note that the dataset for the DMD reconstruction corresponds to the solution of (A.1)
with ∆t = 0.1.

Then, in Figure 10 we show the relative error between the DMD approximation and the reference
solution of (A.1) as follows:

EDMD :=

∥∥YR −YDMD
∥∥
F

‖YR‖F
, ÊDMD(t) :=

∥∥yR(t)− yDMD(t)
∥∥

2

‖yR(t)‖2
, (A.2)

16



0
1

0.2

0.4

1

0.6

0.8

0.5
0.5

0 0

0
1

0.2

0.4

1

0.6

0.8

0.5
0.5

0 0

1

0.5

1

1

10-3

1.5

x2

0.5

2

x1

0.5

0 0

1

0.5

1

1

10-3

1.5

x2

2

0.5

x1

2.5

0.5

0 0

Figure 9. Top: Reference Solution for Burgers’ equation at time t = 0.4875 (left) and t = 0.9875 (right).
Bottom: absolute difference between reference solution and DMD reconstruction with data ∆t = 0.1 at
time t = 0.4875 (left) and t = 0.9875 (right).

where yR(t) is the reference solution and yDMD(t) is its DMD approximation. The notation YR,YDMD

refers to the matrices where each column contains the reference solution and its DMD approximation,
respectively, for different time instances.

0.1 0.05 0.025 0.0125
 t

10-4

10-3

10-2

10-1

0 0.2 0.4 0.6 0.8 1
time

10-15

10-10

10-5

100

 t =0.1
 t = 0.05
 t = 0.025

5 10 15 20 25 30 35 40

rank

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

DMD error

SVD

Figure 10. Error analysis of the DMD reconstruction with a reference solution computed with ∆t = 0.0125
and dataset corresponding to ∆t = {0.1, 0.05, 0.025, 0.0125} as in the x−axis using EDMD in (A.2)

(left), relative error ÊDMD(t) in (A.2) for each time instance for the DMD reconstruction with ∆t =
{0.1, 0.05, 0.025} (middle) and singular values of the snapshots matrix with ∆t = 0.0125 together with
the error behavior EDMD for different rank (right).

It is clear that the more information on the system, e.g. amount of snapshots, the better error
behavior for the DMD solution (see left panel in Figure 10). However, we can already obtain accurate
solutions with a poor dataset. In the middle panel of Figure 10 we show the error of the model for
each time instance for the dataset corresponding to ∆t = {0.1, 0.05, 0.025} using ÊDMD(t) defined in
(A.2). We note that DMD behaves very well for time instances provided in the snapshot set. This

17



is to show that DMD is able to reconstruct accurately the solution for missing information. In this
example the rank r in the DMD method is 9. Finally, we would like to emphasize that, although the
DMD model is linear, it works even for nonlinear problem as, e.g., (A.1). For the sake of completeness
we also show in the right panel of Figure 10 the decay of error EDMD in (A.2) modifying the rank r
in the DMD approximation. As expected the error decays as the rank increases. The singular values
of snapshots set are also in the picture.

References

[1] A. Alla and J.N. Kutz. Randomized model order reduction. Advances in Computational Mathe-
matics, https://doi.org/10.1007/s10444-018-09655-9, 2019.

[2] C. Balzotti, A. Bragagnini, M. Briani, and E. Cristiani. Understanding Human Mobility Flows
from Aggregated Mobile Phone Data. In 15th IFAC Symposium on Control in Transportation
Systems CTS 2018, volume 51-9, pages 25–30, 2018.

[3] D.A. Bistrian and I.M. Navon. An improved algorithm for the shallow water equations model
reduction: Dynamic Mode Decomposition vs POD. Internat. J. Numer. Methods Fluids, 78:552
– 580, 2015.

[4] M. Briani, E. Cristiani, and E. Iacomini. Sensitivity analysis of the LWR model for traffic forecast
on large networks using Wasserstein distance. Commun. Math. Sci., 16(1):123–144, 2018.

[5] P. Héas and C. Herzet. Optimal kernel-based Dynamic Mode Decomposition.
https://arxiv.org/pdf/1710.10919.pdf.

[6] P. Héas and C. Herzet. Optimal low-rank Dynamic Mode Decomposition.
https://arxiv.org/pdf/1701.01064.pdf.

[7] F. L. Hitchcock. The distribution of a product from several sources to numerous localities. Stud.
Appl. Math., 20(1-4):224–230, 1941.

[8] I.T. Jolliffe. Principal component analysis. Springer, 2002.

[9] K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical
Magazine, 2:559 – 572, 1901.

[10] Benedetto Piccoli and Francesco Rossi. Generalized Wasserstein distance and its application to
transport equations with source. Arch. Ration. Mech. Anal., 211(1):335–358, 2014.

[11] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential Equations. Springer,
1994.

[12] F. Santambrogio. Optimal transport for applied mathematicians, volume 87 of Progress in Non-
linear Differential Equations and their Applications. Birkhäuser/Springer, Cham, 2015. Calculus
of variations, PDEs, and modeling.

[13] P. J. Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of
Fluid Mechanics, 656:5–28, 2010.

[14] S.M. Sinha. Mathematical Programming: Theory and Methods. Elsevier, 2005.

[15] G. Tissot, L. Cordier, N. Benard, and B.R. Noack. Model reduction using dynamic mode decom-
position. Comptes Rendus Mécanique, 342:410–416, 2014.

[16] J.H. Tu, C.W. Rowley, D.M. Luchtenburg, S.L. Brunton, and J.N. Kutz. On dynamic mode
decomposition: Theory and applications. AIMS, 1:391–321, 2014.

18



[17] C. Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media,
2008.

[18] S. Volkwein. Model Reduction using Proper Orthogonal Decomposition. Lecture notes, University
of Konstanz, 2011.

[19] D. Zhu, Z. Huang, L. Shi, L. Wu, and Y. Liu. Inferring spatial interaction patterns from sequential
snapshots of spatial distributions. International Journal of Geographical Information Science,
32(4):783–805, 2018.

19


	1 Introduction
	2 Mathematical background
	2.1 DMD method
	2.2 Wasserstein distance and optimal mass transfer problem
	2.3 Numerical approximation of the Wasserstein distance

	3 Coupling DMD and optimal mass transfer problem
	3.1 Main idea
	3.2 A toy example for the complete algorithm: the advection equation

	4 Application to real mobile phone data
	4.1 Dataset
	4.2 DMD approach on TIM data
	4.3 Understanding human mobility flows
	4.4 Numerical results
	4.4.1 Flows of commuters
	4.4.2 Flows influenced by a great event


	5 Conclusions
	A The DMD for the viscous Burgers' equation

